Photon: A Robust Cross-Domain Text-to-SQL System

The Chinese University of Hong Kong

salesforce research

ACL 2020 - System Demonstration
Motivation

End users access information system everyday, everywhere...

Live demo: http://naturalsql.com/
Motivation

Scenario 1: Everyone is a programming master

Live demo: http://naturalsql.com/
Motivation

Scenario 1: Everyone is a programming master

SELECT Quantity FROM Product WHERE Name = "Hoverboard x10"

SELECT Arriving_Time FROM Flights WHERE Flight_Number = "CZ327"

SELECT T2.name FROM Instructor AS T1 JOIN Department AS T2 ON T1.Department_ID = T2.ID GROUP BY T1.Department_ID HAVING AVG(T1.Rating) > (SELECT AVG(Rating) FROM Instructor)

SELECT Name FROM Country WHERE Continent = "Asia" ORDER BY LifeExpectancy LIMIT 1

Live demo: http://naturalsql.com/
Motivation

Scenario 2: Everyone simply talks to their information system

Live demo: http://naturalsql.com/
Motivation

Scenario 2: Everyone simply talks to their information system

- How many “Hoverboard x10” are left in stock?
- Give me the arriving time of “CZ327”.
- Which departments have instructors in general rated above average?
- Show Asian countries ordered by life expectancy.

Desiderata

Accurately map NL input to executable SQL queries

Live demo: http://naturalsql.com/
Desiderata

- Accurately map NL input to executable SQL queries
- Work across different databases
- Robustness - “don’t know” is better than mistakes
- Support user interaction

Photon: A Robust Cross-Domain Text-to-SQL System

Photon: A Robust Cross-Domain Text-to-SQL System

A SOTA neural text-to-SQL parser

A novel confusion detection approach

Template-based response generation for user interaction

Live demo: http://naturalsql.com/
Interaction Flow

Response Template

<table>
<thead>
<tr>
<th>Response</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRM_RESULT</td>
<td>“SQL: {PRED_SQL}: {NL RESPONSE}”</td>
</tr>
<tr>
<td>CONFIRM_CORRECTION</td>
<td>“Sorry, {CONF_TOKENS} is confusing in our scenario, do you mean {CORR_TOKENS}?”</td>
</tr>
<tr>
<td>NEED_REPHRASE</td>
<td>“Sorry, it is a confusing question for me, please rephrase your question and ask again.”</td>
</tr>
<tr>
<td>INVALID_QUERY</td>
<td>“Sorry, it is an invalidate query, please check the table names and associated fields of interest.”</td>
</tr>
</tbody>
</table>
Interaction Flow

Confusion Detection →

Text-to-SQL Parsing →

Response Generation

Response Template

<table>
<thead>
<tr>
<th>State</th>
<th>Response Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRM_RESULT</td>
<td>“SQL: {PRED_SQL}. {NL RESPONSE}”</td>
</tr>
<tr>
<td>CONFIRM_CORRECTION</td>
<td>“Sorry, {CONF_TOKENS} is confusing in our scenario, do you mean {CORR_TOKENS}?”</td>
</tr>
<tr>
<td>NEED_REPHRASE</td>
<td>“Sorry, it is a confusing question for me, please rephrase your question and ask again.”</td>
</tr>
<tr>
<td>INVALID_QUERY</td>
<td>“Sorry, it is an invalid query, please check the table names and associated fields of interest.”</td>
</tr>
</tbody>
</table>
Interaction Flow

Confusion Detection → Text-to-SQL Parsing → Response Generation

Response Template

- **CONFIRM_RESULT**: “SQL: {PRED_SQL}. {NL_RESPONSE}”
- **CONFIRM_CORRECTION**: “Sorry, {CONF_TOKENS} is confusing in our scenario, do you mean {CORR_TOKENS}?”
- **NEED_REPHRASE**: “Sorry, it is a confusing question for me, please rephrase your question and ask again.”
- **INVALID_QUERY**: “Sorry, it is an invalidate query, please check the table names and associated fields of interest.”

Text-to-SQL Semantic Parsing

Spider Dataset (Yu et al. 2018)

Expert-annotated, cross-domain, complex text-to-SQL dataset

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td># DBs</td>
<td>146</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td># Examples</td>
<td>8,659</td>
<td>1,034</td>
<td>2,147</td>
</tr>
</tbody>
</table>

Question: What are the name and budget of the departments with average instructor salary above the overall average?

SQL:

```sql
SELECT T2.name, T2.budget
FROM Instructor AS T1 JOIN Department AS T2
ON T1.Department_ID = T2.ID
GROUP BY T1.Department_ID
HAVING AVG(T1.salary) >
(SELECT AVG(Salary) FROM Instructor)
```
Text-to-SQL Semantic Parsing

Serialize DB schema

<table>
<thead>
<tr>
<th>T</th>
<th>Instructor</th>
<th>C</th>
<th>ID</th>
<th>C</th>
<th>Name</th>
<th>C</th>
<th>Department_ID</th>
<th>C</th>
<th>Salary</th>
<th>C</th>
<th>...</th>
<th>T</th>
<th>Department</th>
<th>C</th>
<th>ID</th>
<th>C</th>
<th>...</th>
</tr>
</thead>
</table>

Live demo: http://naturalsql.com/
Text-to-SQL Semantic Parsing

Text-table joint encoding

<table>
<thead>
<tr>
<th>CLS</th>
<th>What is cost of a hoverboard?</th>
<th>SEP</th>
<th>T</th>
<th>Product</th>
<th>C</th>
<th>...</th>
<th>T</th>
<th>Order</th>
<th>C</th>
<th>...</th>
</tr>
</thead>
</table>

Text-to-SQL Semantic Parsing

Text-table joint encoding

What is cost of a hoverboard?

Live demo: http://naturalsql.com/
Text-to-SQL Semantic Parsing

Text-table joint encoding

Bidirectional LSTM Text Encoder

Table encoding

Field encoding

Table encoding

Field encoding

Data type
Primary key
Foreign key
Output states of the Bi-LSTM

Bidirectional LSTM

BERT

CLS What is cost of a hoverboard?

SEP T Product C ... T Order C ...
Text-to-SQL Semantic Parsing

Text-table joint encoding

What is cost of a hoverboard?

Product
Order

CLS

Pointer-Generator Decoder

Cross-Entropy Loss

+Picklist Value

Live demo: http://naturalsql.com/
Text-to-SQL Semantic Parsing Evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>EM Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNN (Bogin et al., 2019a)</td>
<td>40.7</td>
</tr>
<tr>
<td>Global-GNN (Bogin et al., 2019b)</td>
<td>52.7</td>
</tr>
<tr>
<td>EditSQL + BERT (Zhang et al., 2019)</td>
<td>57.6</td>
</tr>
<tr>
<td>GNN+Bertrand-DR† (Kelkar et al., 2020)</td>
<td>57.9</td>
</tr>
<tr>
<td>EditSQL+Bertrand-DR† (Kelkar et al., 2020)</td>
<td>58.5</td>
</tr>
<tr>
<td>IRNet + BERT (Guo et al., 2019)</td>
<td>61.9</td>
</tr>
<tr>
<td>RYANSQL + BERT † (Choi et al., 2020)</td>
<td>66.6</td>
</tr>
<tr>
<td>PHOTON</td>
<td>63.2</td>
</tr>
</tbody>
</table>

† denotes unpublished work on arXiv.

Table 3: Experimental results on the Spider Dev set (%). EM Acc. denotes the exact set match accuracy.

Spider leaderboard (May 1st, 2020) https://yale-lily.github.io/spider
Confusion Detection

What is the total?

Show me homes with good schools

How many tourists visited all of the 10 attractions?

Hey, lovely weather

Live demo: http://naturalsql.com/
Confusion Detection

Underspecified

What is the total?

Show me homes with good schools

How many tourists visited all of the 10 attractions?

Hey, lovely weather

Live demo: http://naturalsql.com/
Confusion Detection

What is the total?

Show me homes with good schools

How many tourists visited all of the 10 attractions?

Hey, lovely weather

Live demo: http://naturalsql.com/
Confusion Detection

What is the total?

Show me homes with good schools

How many tourists visited all of the 10 attractions?

Hey, lovely weather

Out-of-scope

Live demo: http://naturalsql.com/
Confusion Detection

What is the total?

Show me homes with good schools

How many tourists visited all of the 10 attractions?

Hey, lovely weather

Not a query

Live demo: http://naturalsql.com/
Table 5: Examples of question-side and schema-side transformations for generating training data for untranslatable question detection. Let \(Q \) denote the question and \(S \) denote the schema. For each transformation, we provide two examples, i.e., \((Q_1, S_1)\) and \((Q_2, S_2)\). The italic and bold fonts highlight phrases before and after transformations.
Confusion Detection Dataset (UTran-SQL)

Table 5: Examples of question-side and schema-side transformations for generating training data for untranslatable question detection. Let Q denote the question and S denote the schema. For each transformation, we provide two examples, i.e., (Q_1, S_1) and (Q_2, S_2). The italic and bold fonts highlight phrases before and after transformations.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Original data</th>
<th>Transformed data</th>
<th>Confusing text span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swap</td>
<td>Q1: How many conductors are there? S1:</td>
<td></td>
<td>Conductor ID</td>
</tr>
<tr>
<td></td>
<td>Q2: What are the maximum and minimum values of area code types? S1:</td>
<td></td>
<td>Area Code</td>
</tr>
<tr>
<td>Question</td>
<td>Q1: How many are there? S1:</td>
<td></td>
<td>Country</td>
</tr>
<tr>
<td>Schema Drop</td>
<td>Q1: How much surface area do the countries in the Caribbean cover to? S1:</td>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Q2: Find the name and age of the visitors S2:</td>
<td></td>
<td>Visitor</td>
</tr>
</tbody>
</table>
UTran-SQL Data Statistics

<table>
<thead>
<tr>
<th></th>
<th>Spider</th>
<th>Spider_UTran</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
<td>Dev</td>
</tr>
<tr>
<td># Q</td>
<td>8,659</td>
<td>1,034</td>
</tr>
<tr>
<td># UTran Q</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># Schema</td>
<td>146</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>13,392</td>
<td>1,631</td>
</tr>
<tr>
<td></td>
<td>4,733</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>918</td>
<td>112</td>
</tr>
</tbody>
</table>

Table 1: Data split of Spider and Spider_UTran. Q represents all the questions, UTran Q represents the untranslatable questions.
UTran-SQL Data Statistics

<table>
<thead>
<tr>
<th></th>
<th>Spider</th>
<th>Spider_UTran</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
<td>Dev</td>
</tr>
<tr>
<td># Q</td>
<td>8,659</td>
<td>1,034</td>
</tr>
<tr>
<td># UTran Q</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># Schema</td>
<td>146</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1: Data split of Spider and Spider_UTran. Spider represents all the question and Spider_UTran represents the untranslatable question.

Confusion Detection Model

• **Translatability prediction**: binary classification based on [CLS] representation of the BERT text-table encoder

• **Confusion span detection**: predicting the start and end token indices
Question Rephrasing Model

Original input: How many candidates are registered in statistics?
Processed input: How many [MASK] are registered in statistics? [TABLE NAMES]

System: candidates is confusing here, do you mean students?

Table & Column Names

<table>
<thead>
<tr>
<th>Table & Column Names</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>students</td>
<td>.289</td>
</tr>
<tr>
<td>teachers</td>
<td>.017</td>
</tr>
<tr>
<td>courses</td>
<td>.013</td>
</tr>
<tr>
<td>names</td>
<td>.009</td>
</tr>
<tr>
<td>student details</td>
<td>.008</td>
</tr>
</tbody>
</table>
Limitations

• We assume only one confusion span per sentence
• We assume the confusion span is a column mention
• The transformation rules can introduce errors
• Alternatives for confusion detection in text-to-SQL are worth exploring
 - Yao et al. 2019
 - Yao et al. 2020 (concurrent)
• Limited set of user actions are considered

Live demo: http://naturalsql.com/
Additional Demo Features

- Upload your own DBs for testing
- Effective DB schema visualization and data browsing
- Rate your experience and provide feedback

Live demo: http://naturalsql.com/
Related Work

- **ATIS Corpus collection**
- Hemphill et al. 1990
- Dahl et al. 1994

- **Learning logical-form based semantic parsers for NLIDBs**
- Zelle and Mooney 1996
- Popescu et al. 2003
- Zettlemoyer and Collins 2005

- **Seq2Seq-style neural semantic parsing**
- Sutskever et al. 2014
- Bahdanau et al. 2015

- **Neural networks widely adopted in NLP**
- Dong and Lapata 2016

- **WikiSQL: a large-scale, cross-domain text-to-SQL corpora**
- Zhong et al. 2017

- **TypeSQL, column attention, sketch-based, execution guided, RL, meta-learning**
- Xu et al. 2017
- Dong and Lapata 2018
- Wang et al. 2018
- Yu et al. 2018a

- **Syntax-guided, GNN, schema linking, SemQL**
- Yu et al. 2018b
- Bogan et al. 2019
- Shin et al. 2019
- Guo et al. 2019
- Wang et al. 2020

- **Spider: expert-annotated, large-scale, cross-domain, complex**
- Yu et al. 2018c

- **Table-Aware BERT Encoder, surpassed human-performance on WikiSQL**
- Devlin et al. 2018
- Hwang et al. 2019

- **LM pre-training: BERT**
- ...
Related Work

• Most state-of-the-art cross-domain, complex text-to-SQL semantic parsers are not well packaged for user test and interaction

• Most existing NLIDB systems are DB-specific or non-interactive
Live Demo: http://naturalsql.com/

Join us at the Q&A sessions

Tuesday July 7, 2020 UTC+0 17:00-17:45
Tuesday July 7, 2020 UTC+0 20:00-20:45